

Search for non-resonant HH in 2b+2l+MET final states

Ali EL Moussaouy On behlaf of the ATLAS Collaboration

ACHEP Conference, October 23-27, 2023

Rabat & Kenitra - Morocco

Theoretical Motivation

• Higgs potential after symmetry breaking

$$\mathbf{V}(\mathbf{H}) = \frac{1}{2}\mathbf{m}_{\mathbf{H}}^{2}\mathbf{H}^{2} + \lambda_{3}\mathbf{v}\mathbf{H}^{3} + \frac{1}{4}\lambda_{4}\mathbf{H}^{4} + O\left(\mathbf{H}^{5}\right)$$

In the SM, $\lambda_3 = \lambda_4 = \lambda^{SM} = \frac{m_H^2}{2v^2}$

- Our direct knowledge of the Higgs boson potential shape is very limited
- Other shapes could have caused the same physics, well motivated by cosmological arguments and beyond-SM (BSM) physics.
- Deviation of the coupling strength from SM (measured by the coupling modifier $\kappa_{\lambda} = \lambda_3 / \lambda_{SM}$) may point to new physics

• Ref: DOI:10.1038/s42254-021-00341-2

• Ref: DOI:10.1016/j.physletb.2014.03.026

Analysis Overview - arXiv:2310.11286v1

Main production mode is gluon fusion (ggF):

- Strongly suppressed by the interference effect $\sigma_{ggF}(pp \rightarrow HH) = 31.05 \; fb$ at $\sqrt{S} = 13 \; {\rm TeV}$
- Sensitive to trilinear self-coupling κ_{λ}
- Previous paper optimized only for bbWW channel (Phys. Lett. B 801 (2020) 135145)
- This version optimized three channels (*bbWW*, *bb\tau*\tau, and *bbZZ*)
- Next leading production mode is Vector Boson Fusion (VBF):
 - $\sigma_{VBF}(pp \rightarrow HH) = 1.726 \text{ fb} \text{ at } \sqrt{S} = 13 \text{ TeV}$
 - Sensitive to κ_{λ} and to κ_{2V}
 - First-time implementation in this analysis

Decay Channels

multiple HH decay channels contribute to bbll + MET final state (I = e, μ)

 Combined analysis is necessary: Due to the large overlap between the tree final states: bbWW, bbττ, and bbZZ.

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
zz	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Event Selections

Preselection

- single and dilepton triggers
- exactly two light leptons of opposite charge
- exactly two b-tagged jets

Further selections for VBF category

- at least 2 extra non-b-tagged jets with p_T > 30 GeV
- $\Delta \eta_{jj} > 4$ for the couple of non-b-tagged jets with the highest $\Delta \eta_{jj}$
- *M_{jj}* > 600 GeV for the couple of non-b-tagged jets with the highest reconstructed mass

- SR1: target bbWW, bb au au and bbZZ
- Major background from Top, Z+jets, CRs defined to constrain these backgrounds:
 - Top CR split into TTbarCR and WtCR
 - Zll CR: also used in $bb\tau\tau$ analysis

ML techniques

Multi-class neural network trained with Keras+Tensorflow used for ggF category :

- Output nodes for ggF signal, top-quark processes and others backgrounds
- Bayesian hyperparameter optimisation with Optuna
- Used 20 top out of 43 initial input features
- As final discriminant, signal score is used
- Final Signal Regions: bins with maximum background events (102) \rightarrow 7 bins used

ML techniques

TMVA Boosted Decision Tree used for VBF category :

- Used κ_{λ} = 0 signal in training, for all signal points \rightarrow showed overall best performance
- Considering VBF HH signal, ggF HH treated as background
- Final SRs: bins with maximum O(103) background events → 5 bins used

- Simultaneous maximum-likelihood fit using all regions
- Separate normalization factors for VBF-like and non-VBF-like regions
- All regions used for μ SIG, upper limit on $\sigma(pp \rightarrow hh)$, κ_{λ} -scan and κ_{2V} -scan
- For κ_{2V} -scan: ggF di-Higgs production considered as background
- Theory systematic uncertainties per process correlated across regions
- Experimental systematic uncertainties correlated for all regions

Results - Post-fit plot

- All regions are included in the fit
- 7 bins are used for the ggF SR while 5 bins are used for VBF SR

Results - limits

• Observed and expected upper limits on the Higgs boson pair production cross-section

• Significant improvement compared to the previous ATLAS search in this channel.

Kappa's scan

• Likelihood profiles of the κ_{λ} and κ_{2V} parameters.

Conclusion

- Search HH events in 2b+2l+MET final states has been performed
- Significant improvement achieved with respect to the previously published results
- An observed (expected) 95% CL upper limit on the cross-section for the production of Higgs boson pairs is set at 9.6 (16.2) times the SM prediction
- Stay tuned new results is coming from RUN3!