
The First Edition of the African Conference on High Energy Physics
Rabat-Salé-Kénitra Regional University Consortium, Morocco, October 23-27, 2023

Effect of Quantum Decoherence on Collective Neutrino Oscillations
Anastasiia Purtovaa, Konstantin Stankevicha, Alexander Studenikina,b

aDepartment of Theoretical Physics, Moscow State University, 119992 Moscow, Russia;
bNational Centre for Physics and Mathematics, Sarov, Russia

E-mail addresses: finollari@gmail.com, kl.stankevich@physics.msu.ru, studenik@srd.sinp.msu.ru

1 Introduction
As is known, there are three neutrino flavors (electron, νe , muon, νµ , and tau, ντ

, neutrinos) and three neutrino mass states (ν1,ν2,ν3). Each neutrino flavor is a su-
perposition of neutrino mass states; as a result, flavor oscillations of neutrinos propa-
gating both in vacuum and in a medium occur. However, the interaction of neutrinos
with the medium can violate the superposition of neutrino mass states, which leads
to the suppression of flavor oscillations of neutrinos. This phenomenon is called the
quantum decoherence of neutrinos.

The quantum decoherence of neutrinos can be due to the interaction with the
medium both within the minimally extended Standard Model and beyond it. It was
previously shown that the quantum decoherence of neutrinos can be due to the in-
teraction of neutrinos with the fluctuating medium, with the fluctuating magnetic
field [1–3], and with the fluctuating gravitational field [4]. Two quantum field ap-
proaches to describe the quantum decoherence of neutrinos were developed in [5–9],
where it was shown that the quantum decoherence of neutrino mass states can be due
to the decay of a neutrino into a lighter neutrino state and a massless particle [5–7],
as well as to the inverse process.

In all cited works, the evolution of neutrino is described by the Lindblad equa-
tion [10, 11], irrespectively of the description approach and the mechanism of the
quantum decoherence of neutrinos. This equation is widely used to study the quan-
tum decoherence of neutrinos in neutrino fluxes from terrestrial sources [12–16] and
from the Sun [17]. In this work, we study the effect of the quantum decoherence of
neutrino mass states on collective oscillations [18]. Describing the evolution of the
neutrino by the Lindblad equation, we show that quantum decoherence can suppress
collective oscillations of neutrinos. Previously, we demonstrated this for the case of
two neutrino flavors in [19]. Here, we would like to present the generalized results
for three flavors of neutrino. This case is important because collective oscillations of
neutrinos appear in the cases of both the normal and inverse hierarchies of neutrino
masses, whereas collective oscillations in the case of two neutrino generations appear
only for the inverse hierarchy (see, e.g., [20]). In addition, the Dirac CP-violating
phase cannot be introduced in the case of two neutrino generations [21].

2 Lindblad Equation for Three Neutrino
Flavors

To study flavor oscillations of neutrinos taking into account the interaction between
neutrinos and the quantum decoherence of neutrino mass states in the case of three
flavors, we perform the stability analysis of the evolution equation [22–26], which
allows us to numerically estimate the considered effect under real astrophysical con-
ditions.

We describe the evolution of the neutrino and antineutrino in flavor basis in terms
of the density matrices ρ(t) and ρ̄(t), respectively, using the Lindblad equations:

dρ(t)
dt

=−i[H,ρ(t)]+D[ρ(t)], (1)

dρ̄(t)
dt

=−i[H̄, ρ̄(t)]+D[ρ̄(t)], (2)

where H = Hv +Hm +Hνν is the total Hamiltonian of the neutrino, which includes
the vacuum contribution Hv, interaction with the medium (electrons, neutrons, and
protons) Hm and the neutrino–neutrino interaction Hνν . The neutrino–neutrino and
antineutrino–antineutrino interaction Hamiltonians Hνν and H̄νν depend on the den-
sity matrices ρ(t) and ρ̄(t) (see, e.g., review [18]). In Eqs. (1) and (2), D[ρ] is the
dissipator describing the quantum decoherence of neutrino states and is given by the
expression

D[ρ] =
1
2

N2−1

∑
k=1

[
Vk,ρV †

k

]
+
[
Vkρ,V

†
k

]
, (3)

where Vk are the dissipative operators corresponding to the interaction of the neutrino
with the ambient medium and N is the dimension of the space of the corresponding
density matrices on which these operators act (N = 2 and N = 3 in the cases of two
and three flavors, respectively).

Further, it is convenient to rewrite Eqs. (1) and (2) using the representation of oper-
ators in terms of the SU(3) basis matrices, i.e., Gell-Mann matrices (Fµ): O = aµFµ .
In this representation, the evolution equations for the neutrino and antineutrino have
the form

∂Pk(t)
∂ t

Fk = 2εi jkHiPj(t)Fk +DklPl(t)Fk, (4)

∂ P̄k(t)
∂ t

Fk = 2εi jkH̄iP̄j(t)Fk +DklP̄l(t)Fk, (5)

where Pk (P̄k) and Hi (H̄i) are the coefficients of the representation of the density ma-
trix and the Hamiltonian of the neutrino (antineutrino) in terms of the Gell-Mann
matrices,

ε123 = 1, ε458 = ε678 =

√
3

2
,

ε147 = ε165 = ε246 = ε257 = ε345 = ε376 =
1
2
,

(6)

are the structural constants of the SU(3) algebra, and Dkl is the matrix in the effective
mass basis, which should be symmetric and positively defined by definition because
Vk = V †

k [12] (this condition ensures that the von Neumann entropy of an open sys-
tem does not decrease). For the total probability to be conserved, the off-diagonal
elements should be zero: Dµ0 = D0ν = 0.

Collective oscillations of neutrinos appear in superdense astrophysical media, where
the effective mass basis almost coincides with the flavor one. In this case, the matri-
ces (Dkl) in the flavor and effective mass bases can be taken as the same matrix. As a
result, the matrix Dkl can be represented in the general form

(Dkl) =−diag{Γ21,Γ21,Γ11,Γ31,Γ31,Γ32,Γ32,Γ22}. (7)

If the propagating neutrino keeps its energy, i.e., [Vk,H] = 0, then Γ11 = Γ22 = 0 [14].
Let the system at a certain initial time t0 be in the stationary state ρ0 = ρ(t = t0), so

that:

[H0,ρ0] = 0, (8)

where H0 = H(ρ0). In this case, there is a basis in which the matrices ρ0 and H0 are
diagonal:

H0 =

H0
11 0 0
0 H0

22 0
0 0 H0

33

 ,ρ0 =

ρ0
11 0 0
0 ρ0

22 0
0 0 ρ0

33

 . (9)

The coefficients of their representations in terms of the Gell-Mann matrices have the
form:

(H0
k ) =

(
0,0,H0

3 ,0,0,0,0,H
0
8

)T
,

(P0
k ) =

(
0,0,P0

3 ,0,0,0,0,P
0
8

)T
.

(10)

Similar formulas are also obtained for the antineutrino.

3 Linearization and Stability Analysis
Specifying initial conditions, we analyze the stability of the evolution equations (4)
and (5). We assume that time-dependent amplitude variations δρ and δH of the den-
sity matrix and the Hamiltonian with respect to their initial values ρ0 and H0 are
small:

Pk = P0
k +δPk,where δPk = P′

ke
−iωt + c.c., (11)

Hi = H0
i +δHi,where δHi = H ′

i e
−iωt + c.c., (12)

where P′
k and H ′

i are the variational amplitudes and ω are the frequencies of excited
modes near the initial position. The elements of the Hamiltonian of the system Hi j de-
pend on the density matrices ρi j and ρ̄i j of the neutrino and antineutrino, respectively;
then, H ′

i can be written in the form:

H ′
i =

∂Hi

∂Pi
P′

i +
∂Hi

∂ P̄i
P̄′

i . (13)

We substitute Eqs. (11)-(13) into the evolution equation (4) with the initial conditions
(10), neglecting the second order terms in the commutator [δρ,δH]. Then for the off-
diagonal elements (ρ ′

12 = P′
1− iP′

2,ρ
′
13 = P′

4− iP′
5,ρ

′
23 = P′

6− iP′
7) of the density matrix

we obtain the equation for eigenvalues in the matrix form:{
i
(

Γ 0
0 Γ

)
+ω

}(
ρ ′

ρ̄ ′

)
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B̄ Ā

)(
ρ ′
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)
. (14)

Here,

(
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ρ̄ ′

)
=


ρ ′

12
ρ ′

13
ρ ′
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ρ̄ ′
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ρ̄ ′

31
ρ̄ ′

32

 (15)

is the column of the off-diagonal elements of the density matrix.

Γ =

Γ21 0 0
0 Γ31 0
0 0 Γ32

 (16)

is the decoherence matrix, and the stability matrix on the right hand side of Eq. (14)
can be represented in the block form in terms of the matrices

A =

A12,12 A12,13 A12,23

A13,12 A13,13 A13,23

A23,12 A23,13 A23,23

 , B =

B12,12 B12,13 B12,23

B13,12 B13,13 B13,23

B23,12 B23,13 B23,23

 . (17)

Then, the elements of the stability matrix can be written in the form:

Ai j,kl = (H0
kk −H0

ll)δikδ jl +(ρ0
j j −ρ

0
ii)

∂Hi j

∂ρkl
,

Bi j,kl = (ρ0
j j −ρ

0
ii)

∂Hi j

∂ ρ̄lk
,
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,
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0
j j)

∂ H̄i j

∂ρlk
,

(18)

where i, j,k, l = 1,2,3.

4 Conditions for the Appearance of Collec-
tive Oscillations

For the subsequent analysis of the instability of the system, it is necessary to deter-
mine the eigenvalues of the stability matrix; in the case of three flavors, this requires
numerical calculations because of a large dimension of the matrix. In our case, the
presence of this instability will indicate the possibility of collective oscillations of
neutrinos.

According to Eq. (11), if the frequencies of excited modes ω are imaginary, the
off-diagonal elements of the density matrix increase exponentially, indicating the in-
stability of the system. As a result, collective oscillations appear.

Let {λi} be a set of the eigenvalues of the stability matrix specified by Eqs. (14) and
(17). Then, the conditions for the appearance of collective oscillations of neutrinos
between the ith and jth flavor states can be written in the form

Im[λ ] ̸= 0; (19)

Im[λ ]> Γi j. (20)

Here, the first condition is the general condition for the appearance of collective
oscillations and was obtained in previous works (see, e.g., [24]), whereas the sec-
ond condition obtained for the case of three flavors is new and includes the effect of
quantum decoherence of neutrino mass states.

5 Discussion
We now numerically estimate the effect of quantum decoherence of neutrinos on col-
lective oscillations of neutrinos. The authors of [26] show that the imaginary part of
the eigenvalues of the stability matrix under real conditions of the supernova explosion
can be Im[λ ]∼ 10−17−10−18 GeV. To estimate the effect of quantum decoherence of
neutrinos on collective oscillations of neutrinos, experimental constraints on the deco-
herence parameters can be used. In particular, the decoherence parameter for neutrino
fluxes from terrestrial sources and from the Sun is limited as Γ < 10−24 GeV [12] and
Γ < 10−28 GeV [17], respectively.

We emphasize that the presented constraints can not be used for extreme conditions
of the supernova because they are obtained for strongly different ambient conditions

(for terrestrial and solar matter). In particular, we showed in [6] that the quantum 
decoherence parameter due to the radiative decay of the neutrino under the conditions 
of the supernova explosion can reach Γ ∼ 10−21. Furthermore, quantum decoherence 
can also arise due to the physics beyond the Standard Model [7, 27]. Since the imagi-
nary part of eigenvalues of the stability matrix should be larger than the decoherence 
parameters for the appearance of collective oscillations of neutrinos (see Eq. (20)), 
the detection of neutrino fluxes from supernova explosions will allow one to limit de-
coherence parameters under extreme astrophysical conditions to Γ ∼ 10−17 − 10−18

GeV.
We note that it is important to obtain constraints on the quantum decoherence pa-

rameters of neutrinos from experimental data on neutrino fluxes from various sources 
because this can provide bounds on the widths of various neutrino processes (using 
the results obtained in [5–7] and unconventional interactions of neutrinos [8, 9]).

This work was supported by the Russian Science Foundation (project no. 
22-22-00384).
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