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Neutrino effective Hamiltonian

We describe neutrino flavour, spin and spin-flavour oscillations engendered by neutrino interac-
tions with an external electric current due to neutrino charge radii and anapole moments. We
consider two flavour neutrinos with two possible helicities v; = (v;, vy, v, 1), « = p,7 and
perform calculations that are analogous to those in [1, 2, 3]. In the mass basis the neutrino ef-
fective potential describing electromagnetic interactions of the neutrino field v with the external
electric current is given by
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where ¢ = p; — p fr Di and p f are the initial and final neutrino momenta, 7" is the normalization
time. The matrix element
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is dertermined by the electric current of the external charged fermions f (the protons or electrons),
Ty =eln ¢V ). Note that \ in (2) contains the corresponding terms of the neutrino electro-
magnetic vertex (for its decomposmon see [4]). We are interested only in the electric charge and
anapole form factors
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where ff '(¢%) and ff '(¢?) are charge and anapole form factors in the mass basis. The neutrino
charge radlus is determined by the second term in the expansion of the neutrino charge form
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We consider the case of zero neutrino millicharge f(0) = 0. Therefore, the electromagnetic vertex
accounted for the charge radius r and the anapole moment a = f4(0) reads
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This vertex gives the following effective interaction Hamiltonian
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The neutrino initial and final states are given by
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where x(") defines the neutrino helicity state X =@ 0)T and Y= =0T

into equation (5) we get

. Substituting (6)

22y
A~ "/”{J’ v (< il +a/'m> It "[(mw/’,‘:m§+@q;‘ sing€) af+ (o sing — o7 cose) O(s) } }x””-

@)

JEM s the longitudinal (in respect to z-axis of the neutrino propagation) electric current

where i
and J f M is the transversal component of the ccurrent, ¢ is the angle between the fixed z-axis that
is perpendicular to z-axis. The gamma factors are given by
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Now consider contribution of the longitudinal .J, ”E M

electric current separately.
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and the transversal J- f‘” components of the

The longitudinal current J"" contribution
In the flavour basis vy = wh vl IIR %) for the corresponding part of the interaction Hamiltonian
we get
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where
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It can be seen that the neutrino interaction with the longitudinal current J| HE M modifies the neu-

trino flavour oscillations.

The transversal current J "/ contribution

In the flavour basis for the corresponding part of the interaction Hamiltonian we get
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From these expressions it follows that the neutrino charge radius and anapole moment interac-
tions with the transversal electric current can generate neutrino spin and spin-flavour oscillations.

Neutrino interaction Hamiltonian in matter and external mag-
netic field

Neutrino also interacts with moving media and interacts with external magnetic field though
neutrino magnetic moment. From weak interaction with moving matter one gets (see [2])

Ane (1= vg) = 2m, (1= vy) 0 (2never = nyvaL) (”) (2nevey — nuk‘m)(,ﬂ)

0 2n, (1= vy)) Nt (ﬂ) Nt (ﬂ)
ot = ’\ﬁ (2ncVer. — A(ig o (i) 0 0 3

(20,001 = nyva1) (¥ — UL (i) 0 0

where n;, and n, are the neutron and electron density profiles, v, . = v nel| T Vn,el are the neutrons
and electrons velocities and
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The Hamiltonian that accounts for the neutrino magnetic moment interaction with two compo-
nents of an external magnetic field B = B)| + B, reads
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where ¢ is the angle between v and B . The components of the effective magnetic moment in
the flavour basis are expressed through the components in the mass basis
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In derivations of the neutrino oscillations probabilities we take into account all interaction Hamil-
tonians and also the vacuum Hamiltonian.

Neutrino spin oscillations /> +» v/

Consider two neutrino states with different helicities: (%, v). The corresponding neutrino oscil-

lations are governed by the evolution equation
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where L;’ i and Af fy are expressed in terms of the elements H;; of the Hamiltonian:
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For the oscillation v% « v probability we get
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It follows that whereas the spin oscillations can be generated by the neutrino anapole moment in-
teractions with an external electric current, the interaction due to the charge radius does not pro-
duce the spin oscillations. Thus, these peculiarities can be used for disintegration of the anapole
moment and charge radius effects in neutrino interactions.

Neutrino spin-flavour oscillations " < v/

Now consider two neutrino flavour states with two different helicities: (v2, 1.

ing neutrino oscillations are governed by the evolution equation
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For the case of the neutrino oscillations 1%

The correspond-

v the probability is again given by (19) with
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Contrary to the previous case, these expressions depend on both the neutrino anapole moment
and the charge radius.
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