

Istituto Nazionale di Fisica Nucleare Sezione di Padeva

Recent results from LHCb

Anna Lupato

on behalf of the LHCb Collaboration

ACHEP 2023 Rabat-Salè-Kentra October 23-27,2023

LHCb

- LHCb was originally designed for CP violation and rare beauty & charm decays
- But now it is a general purpose detector: *exotic spectroscopy, EW precision physics, heavy ions, fixed target program...*

- LHCb is a spectrometer in the forward direction (2< η <5)
- Excellent vertexing, tracking and particle identification
- Low trigger threshold on hadrons, muons and photons
- Production of all types of b and c hadrons

ACHEP

Anna Lupato

• The CKM matrix describes the quark charged current weak interactions

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta s} & |V_{tb}| \end{pmatrix}$$

• The unitarity of this matrix leads to

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

• It can be visualized as a triangle in the complex plane

- The key test of the SM is the check of the unitarity of the CKM matrix
 - Magnitudes:
 - measure branching fractions or mixing frequencies = ...
 - Phases:
 - measure the CP violating asymmetries

Measurement of ϕ_s in $B^0_s \rightarrow J/\psi K^+K^-$

[arXiv:2308.01468]

- B decays to CP eigenstates allow to probe the mixing phase $\beta_s = \phi_s/2$ through the interference between decays with and without mixing with a c- \overline{c} resonance in the final state. $\varphi_s = -0.039 \pm 0.022 \pm 0.006$ radius
- $B^0{}_s\to J/\psi K^+K^-$ channel,in the vicinity of $\varphi(1020)$ resonance with the full Run 2 dataset.
- To extract ϕ_s , CP even and CP-odd decay amplitude need to be disentangled \rightarrow A weighted simultaneous fit to decay time distribution and decays angles ($\cos\theta_K$, $\cos\theta_\mu$, ϕ_h) in the helicity basis is performed

$$\begin{split} \varphi_s &= -0.039 \pm 0.022 \pm 0.006 \text{ rad} \\ |\lambda| &= 1.001 \pm 0.011 \pm 0.005 \\ \Gamma_s &- \Gamma_d &= 0.0056^{+0.0013}_{-0.0015} \pm 0.0014 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0845 \pm 0.0044 \pm 0.0024 \text{ ps}^{-1} \end{split}$$

- Most precise measurement to date and consistent with SM
- $|\lambda|$: consistent with no direct CPV
- $\Gamma_s \Gamma_d$: consistent with HQE expectation [JHEP12 (2017) 068]

Measurement of $\Delta \Gamma_s$ in $B^0_s \rightarrow J/\psi \pi^+\pi^-$ and $B^0_s \rightarrow J/\psi \eta'$

- The decay-width difference between the light and heavy mass eigenstates
- $\Delta\Gamma_s$ can be determined from the decay-width difference between a CP-odd and a CP-even B⁰_s mode.
- If CP violation is negligible:

$$\Gamma(B_s^0(t) \to f) \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + \eta_{CP} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$

5500

114. 12 to

integrating over a time bin

$$R_{i} = \frac{N_{\rm L}}{N_{\rm H}} \propto \frac{\left[e^{-\Gamma_{s}t(1+y)}\right]_{t_{1}}^{t_{2}}}{\left[e^{-\Gamma_{s}t(1-y)}\right]_{t_{1}}^{t_{2}}} \cdot \frac{(1-y)}{(1+y)}$$

$$R_i = A_i \cdot \frac{N_{\rm L}^{\rm RAW}}{N_{\rm H}^{\rm RAW}}$$

N_{L(H)}: CP-even(odd) modes

efficiency in each decay time bin

- 1st measurement using n' ٠ channel
- In agreement with the SM ٠

[LHCb-PAPER-2023-025]

ACHEP

Measurement of $sin(2\beta)$

- B decays to CP eigenstates allow to probe the mixing phase β through the interference between decays with and without mixing

$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \frac{S\sin(\Delta m_d t) - C\cos(\Delta m_d t)}{\cosh(\frac{1}{2}\Delta\Gamma_d t) + \mathcal{A}_{\Delta\Gamma}\sinh(\frac{1}{2}\Delta\Gamma_d t)}$$
$$S = \sin(2\beta + \Delta\phi_d + \Delta\phi_d^{\rm NP})$$

• Decay channels: $B^0_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^0_s$, $B^0_s \rightarrow \psi(2s)(\rightarrow \mu^+\mu^-)K^0_s$, $B^0_s \rightarrow J/\psi(\rightarrow e^+e^-)K^0_s$ with $K^0_S \rightarrow \pi\pi$

$$\begin{split} P(t,d,\eta) &\propto \left[1 + d\left(1 - 2\omega^+(\eta)\right)\right] P_{B^0}(t) + \left[1 + d\left(1 - 2\omega^-(\eta)\right)\right] P_{\bar{B}^0}(t) \\ P_{B^0(\bar{B}^0)}(t) &\propto \left\{ (1 + A_P)(1 + \Delta\epsilon_{tag})e^{-\Gamma_d t'}(1 + S)\sin(\Delta m_d t') \pm C\cos(\Delta m_d t')) \right\} \otimes R(t-t') \cdot \epsilon(t) \end{split}$$

- Simultaneous fit of all channels
- Combination run2 and run1 data

$$\begin{split} S^{\text{Run } 1\&2}_{J/\psi K^0_{\text{S}}} &= 0.726 \pm 0.014 \, (\text{stat+syst}) \\ C^{\text{Run } 1\&2}_{J/\psi K^0_{\text{S}}} &= 0.010 \pm 0.012 \, (\text{stat+syst}) \end{split}$$

Most precise single measurement Agreement with CKMfitter predictions

[LHCb-PAPER-2023-013]

where

CKM y angle

- γ is the phase difference between $b \rightarrow c$ and $b \rightarrow u$ quark transition
 - measurable in purely tree level o indirectly
 - have negligible theoretical uncertainty as hadronic parameters determined in data

- LHCb combination:
- simultaneous fit of γ and $D^0\,mixing$ parameters

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$
 [JHEP 12(2021)141]

y angle

- It is typically measured in B decays such as $B^{\pm} \rightarrow Dh^{\pm}$ (where $D = D^{0}$, D^{0} and h = K, π)
- Measurement technique depends on D-decay mode

 $|A(B^-)|^2 \propto A_D^2 + \frac{r_B^2}{r_B^2} A_{\overline{D}}^2 + 2A_D A_{\overline{D}} r_B \cos(\frac{\delta_B}{r_B} - \gamma)$

 $|A(B^+)|^2 \propto A_D^2 + r_B^2 A_{\overline{D}}^2 + 2A_D A_{\overline{D}} r_B \cos(\delta_B + \gamma)$

• LHCb γ measurements with multibody D decays

- $B^{\pm} \rightarrow D^{*}K^{\pm}$ (full reconstructed)[LHCb-PAPER-2023-012]
- $B^{\pm} \rightarrow D^*K^{\pm}$ (partially reconstructed)[LHCb-PAPER-023-029] with $D \rightarrow K^0_s h^+h^-$

- The measurements are performed by analyzing the signal yields variation across the D decay phase space
 - They are independent of any amplitude model
 - direct measurement of strong phase between D and D from BESIII and CLEO

y angle

- Gain complementary info from $B^0 \rightarrow DK^*(892)^0$:
 - interference 3 times larger that for $B^{\pm} \rightarrow Dh^{\pm}$
- $\mathbf{B}^{0} \rightarrow \mathbf{DK}^{*}(892)^{0}$ with $\mathbf{D} \rightarrow \mathbf{K}^{0}_{s} \mathbf{h}^{+}\mathbf{h}^{-}$ [LHCb-PAPER-2023-009]
 - The γ angle is determined by examining the distributions of signal decays in phase space bins of the self-conjugate $D\to K^0{}_{s}~h^+h$

•
$$N_i(B^0) = h^{B^0} \left[F_{-i} + (x_+^2 + y_+^2)F_i + 2\kappa\sqrt{F_iF_{-i}}(x_+c_i - y_+s_i) x_\pm \equiv r_{B^0}\cos(\delta_{B^0} \pm \gamma) \right]$$

$$y_{\pm} \equiv r_{B^0} \sin(\delta_{B^0} \pm \gamma)$$

ACHEP

• $B^0 \rightarrow DK^*(892)^0$ with the ADS and GLW D-decays finale states [LHCb-CONF-2023-003]

Candidates / (15.0 MeV/e²

160

140 -

120 -

100 -

 $D \rightarrow K_S^0 \pi^+ \pi^-$

LHCb

5300

5200

5400

9 fb-

+

Data

Total

 $- B^0 \rightarrow DK^{*0}$

 $- \overline{B}^0_* \rightarrow DK^{*0}$

 $B^0 \rightarrow D^* K^{*0}$

 $\overline{B}^{0}_{*} \rightarrow D^{*}K^{*0}$

5500 5600 5700

 $m(DK^{*0})$ [MeV/c²]

 $B^0 \rightarrow D\pi^+\pi^-$

 $B^+ \rightarrow DK^+$ Combinatorial

5800

- Fit to selected data through a simultaneous unbinned extended maximum-likelihood fit of the B^o candidate reconstructed mass or each flavour of each D final state
- Results from $D \rightarrow K^0_s h^+h$ broke the degeneracy

$$\begin{array}{rcl} {}^{\rm Reduces \ B^+/B^0 \ tension} & \longrightarrow & \gamma & = & (49^{+23}_{-18})^\circ \\ {}^{\rm Consistent \ with \ expectations} & \longrightarrow & r_{B^0} & = & 0.271^{+0.068}_{-0.066} \\ & & \delta_{B^0} & = & (236^{+19}_{-21})^\circ \end{array}$$

y angle

- Measurement of CP asymmetry in $B_{s}^{0} \rightarrow D_{s}^{-} K^{+}$ [LHCb-CONF-2023-004]
- With $D_s^- \rightarrow K^+\pi^+\pi^-$, $D_s^- \rightarrow K^-K^+\pi^-$, $D_s^- \rightarrow \pi^-K^+\pi^-$
- Time dependent measurement of $\boldsymbol{\gamma}$

$$\Gamma\left(B_{s}^{0}(t) \to f/\tilde{f}\right) \sim \mathrm{e}^{-\Gamma_{s}t}\left(\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + C_{\tilde{p}\tilde{f}}\cos\left(\Delta m_{s}t\right) + A_{\tilde{p}\tilde{f}}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - S_{\tilde{p}\tilde{f}}\sin\left(\Delta m_{s}t\right)$$

$$C_{f} = C_{f} = \frac{1 - r_{D,K}^{2}}{1 + r_{D,K}^{2}} \qquad A_{f}^{\Delta \Gamma} = \frac{-2r_{D,K}\cos\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D,K}^{2}} \qquad S_{f} = \frac{2r_{D,K}\sin\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D,K}^{2}}$$
$$A_{f}^{\Delta \Gamma} = \frac{-2r_{D,K}\cos\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D,K}^{2}} \qquad S_{f} = \frac{2r_{D,K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D,K}^{2}}$$

 $B^0_* \rightarrow D^-_K K^+$

 $\stackrel{\pm}{=} \overline{B}{}^{0}_{s} \rightarrow D^{-}_{s}K^{+}$

- Simultaneous fit of all modes and runII years
- External input: $\Delta \Gamma_s$, $\Gamma_{s,}$ detection asymmetry
- Significant CP violation in the interference

 \pm Untagged $D_{\tau}^{-}K^{+}$

First charm CPV in a single channel

- The time integrated CP asymmetry in the Cabibbo suppressed decay $D^0 \rightarrow K^+K^-$ [Phys. Rev. Lett. 131 (2023) 091802]
- CPV in charm small $O(10^{-4}) \rightarrow \text{sensitive to NP}$
- CPV in charm observed in time integrated difference of CP asymmetries:

 $\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$

- The first measurement of CPV in the charm system (5.3 σ) [Phys. Rev. Lett. 122 (2019) 211803]
- measurement of $A_{CP}(K^+K^-)$:

$$\mathcal{A}_{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4}$$

- then determine the direct CP asymmetries using $\Delta A_{\rm CP}$ $a^d_{K^-K^+} = (7.7 \pm 5.7) \times 10^{-4}$ $a^d_{\pi^-\pi^+} = (23.2 \pm 6.1) \times 10^{-4}$

W mass

- Measurement of the W boson mass
- Complementary to Atlas and CMS
- 2016 dataset
- Simultaneous fit to muon p_T from $W \rightarrow \mu \nu_{\mu}$ and ϕ^* of $Z \rightarrow \mu \mu$ $\tan((\pi - \Delta \phi)/2) = p_T^Z$

$$\phi^* = \frac{\tan((\pi - \Delta \phi)/2)}{\cosh(\Delta \eta/2)} \sim \frac{p_{\rm T}}{M}$$

- Determination of the charge dependent curvature biases and momentum scaling
- Offline reprocessing of the alignment with Z decays

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

ACHEP

Hadron states

[arXiv:2206.15233]

- Tetraquark and pentaquark: Tightly bounded states? Hadronic molecules?
 - Nature of exotic states still unclear

Doubly charged tetraquark

- First observation of isospin triplet 4-states in $D_{s}{}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ spectrum
- Combined amplitude analysis for $B^0 \rightarrow \overline{D}{}^0D_s^+\pi^-$ and $B^0 \rightarrow D^-D_s^+\pi^-$
- $m(D_s^+\pi^-)$ well described by adding tetraquark states T^a_{cso} (2900)⁰ T^a_{cso} (2900)⁺⁺
 - $M = 2.908 \pm 0.011 \pm 0.020 \,\mathrm{GeV}$
 - $\Gamma = 0.136 \pm 0.023 \pm 0.011 \, \text{GeV}$
- Significance: $> 9\sigma$
- spin-parity $J^{P} = 0^{-}$

$\mathbf{B}_{(s)} \rightarrow \mu^+ \mu^- \text{ and } \mathbf{D}^0 \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09^{+0.46}_{-0.43}, 0.11}\right) \times 10^{-9}$$

• $B_s^0 \rightarrow \mu^+\mu^-$ found with significance >10 sigma • no evidence yet for $B^0 \rightarrow \mu^+\mu^-$ (1.7 sigma)

[Phys. Rev. D105 (2022) 012010]

- $D^0 \rightarrow \mu^+ \mu^-$: unique probe of up-type quark FCNC
- Using $D^* \rightarrow D^0 \pi^+$
- Normalization channel: $D^0 \rightarrow h^-h^+$ (K, π)
- Simultaneous fit to $m(\mu^+\mu^-)$ and $m(D^*)$ $m(D^0)$
- Most stringent limit of FCNC in charm sector

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.94 \,(3.25) \times 10^{-9} \text{ at } 90 \,(95)\% \text{ CL}$ [Phys. Rev. Lett. 131 (2023) 041804]

Search for new physics in rare Λ_b

[Phys. Rev. Lett. 131 (2023) 151801]

- The flavour changing neutral-current (FCNC) transition $b\to sl^+l^-$ proceeds through electroweak loop diagrams in the SM
 - a sizeable contribution could be introduced by BSM physics
- LHCb has a unique access to all b hadron species
 - Λ_b baryon: spin $\frac{1}{2} \rightarrow$ complementary to B

• Measurement of Branching fraction of $\Lambda_b \rightarrow \Lambda(1520) (\rightarrow pK^{-})\mu^{+}\mu^{-}$

bins of squared dimuon mass q²

$$\left[\frac{d\mathcal{B}(\Lambda_b^0 \to \Lambda(1520)\mu^+\mu^-)}{dq^2}\right]_{q_{\min}^2}^{q_{\max}^2} = \frac{1}{(q_{\max}^2 - q_{\min}^2)} \frac{\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi)\mathcal{B}(J/\psi \to \mu^+\mu^-)}{\mathcal{B}(\Lambda(1520) \to pK^-)} \frac{N_{\Lambda(1520)\mu^+\mu^-}}{N_{pK^-J/\psi}} \frac{\varepsilon_{pK^-J/\psi}}{\varepsilon_{\Lambda(1520)\mu^+\mu^-}}$$

- Extraction of $\Lambda(1520)$ from other states by fitting m(pK)
- Large differences with prediction at low and mid $q^{\scriptscriptstyle 2}$
- Need better theory understanding of FF

LFU: Equal electroweak coupling of gauge bosons to all charged leptons.

- New simultaneous analysis of the two most sensitive channels $B \rightarrow K^{(*)}$]]
- Found PID dependence on R_{K*}
- Additional MisID component identified thanks to simultaneous analysis
 - Triple misID $B \to D(\to K_{\to e}\pi_{\to e})\pi_{\to K}$
 - Double misID $B \rightarrow KK_{\rightarrow e}K_{\rightarrow e}$
- Now estimates misID from data control region enriched in $\pi \rightarrow e$ and $\pi \rightarrow K$ misID

READ

 $R_{K^{++}}$

 $R_{K^{Q}}$

 R_K

LFU with semileptonic decays

LFU in b→clu decays

$$\tau \to \mu \overline{\nu_{\mu}} \nu_{\tau}$$

- Simultaneous measurement of
- R(D⁰) and R(D*) with D⁰μ⁻ and D*+μ⁻ samples (run1)
- Phys. Rev. Lett. 131, 111802]

 $\mathcal{R}(D^*) = 0.281 \pm 0.018 \pm 0.024$ $\mathcal{R}(D^0) = 0.441 \pm 0.060 \pm 0.066$ correlation ho = -0.43

• In agreement with SM at 1.9σ

$$\tau \to 3\pi\nu_{\tau}$$

$$\mathcal{R}(D^{*-}) = \underbrace{\left[\frac{\mathcal{B}(B^{0} \to D^{*-}\tau^{+}\nu_{\tau})}{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}\right]}_{\mathcal{K}(D^{*-}), measured} \times \underbrace{\left[\frac{\mathcal{B}(B^{0} \to D^{*-}\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(B^{0} \to D^{*-}\mu^{+})}\right]}_{external}$$

• 2015-2016 data

 $\mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \, (\text{stat}) \pm 0.015 \, (\text{syst}) \pm 0.012 (ext)$

- In agreement with SM within 1σ [Phys. Rev. D 108, 012018]
- Additional sensitivity to NP comes from B → D*lv angular distributions → fist LHCb measurement of longitudinal D* polarization, complementary to R(D*)

$$\frac{d^2\Gamma}{dq^2d\cos\theta_D} = a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D$$

• In agreement with SM [LHCb-PAPER-2023-020]

- Broad physics program at LHCb
- Successful Run1 and Run2: 3+6 fb⁻¹, still many analysis ongoing
- Upgrade Phase I: commissioning ongoing
 - 10 times more data (20 times more hadronic events)
 - Complementarity with Belle
 - Synergy between LHCb, ATLAS and CMS on some important channels
- Strong program beyond flavour exploiting unique acceptance

