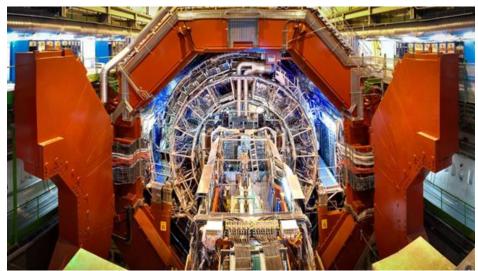
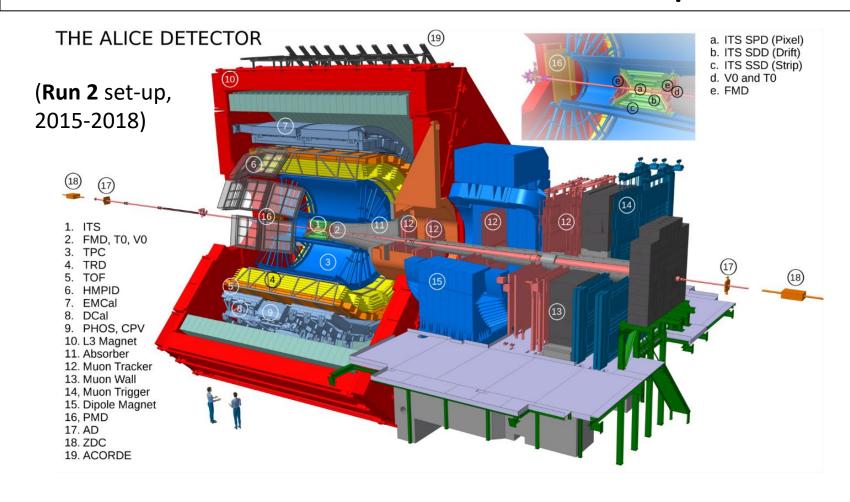


Luminosity and inelastic cross section determination for hadronic collisions with ALICE at the LHC

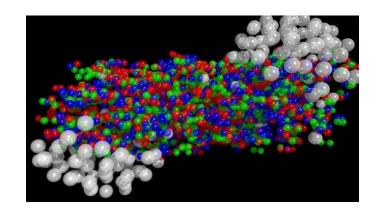
M. Gagliardi

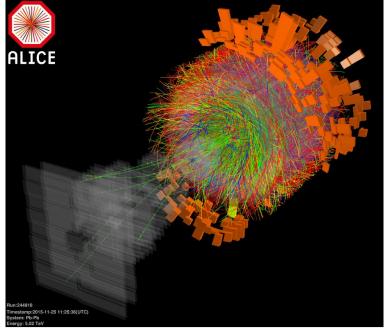

(Università degli Studi and INFN, Torino)

On behalf of the ALICE collaboration


Outline

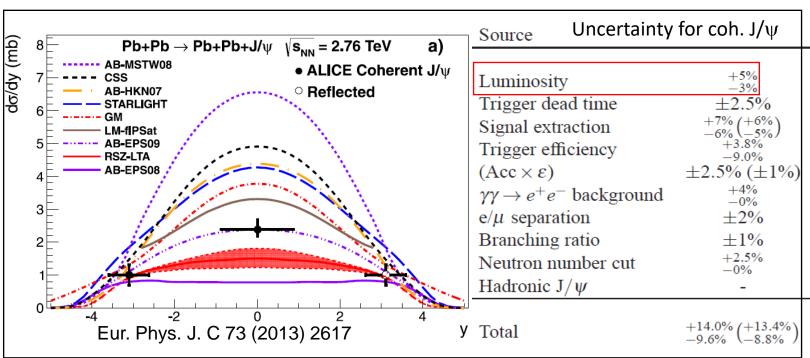
- Cross section measurements in ALICE
- Basics of luminosity and the van der Meer scan
- Luminosity determination and results for pp, p-Pb and Pb-Pb collisions at the LHC Run 2
- Measurement of the hadronic inelastic cross section for Pb-Pb collisions
- Conclusions

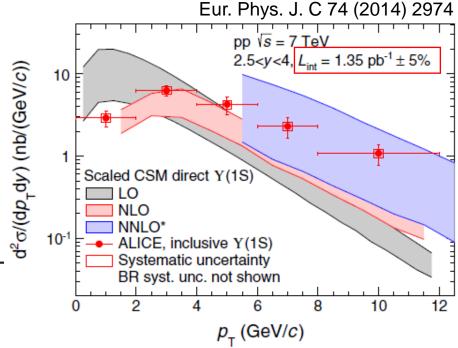




The ALICE experiment

- Study the hot and dense medium formed in Pb-Pb collisions at the LHC
- Study pp and p-Pb collisions, both as a reference for Pb-Pb and to gather insights on QCD mechanisms





Luminosity: why does it matter?

Cross-section measurements are essential to the ALICE physics program:

- Production of hard probes of the QCD medium such as quarkonia, jets, heavy-flavour, direct photons..
- Electromagnetic processes in p-Pb and Pb-Pb collisions (e.g. vector meson photoproduction, EM dissociation..)

Luminosity uncertainty for LHC Run 1:3-5% depending on data sets

- Non negligible
- Limit for precision measurements
 (e.g. total inelastic cross section)

Luminosity: the basics

For cross-section measurements,

$$\sigma = N / \mathcal{L}_{int}$$

For two counter-rotating bunches at a collider:

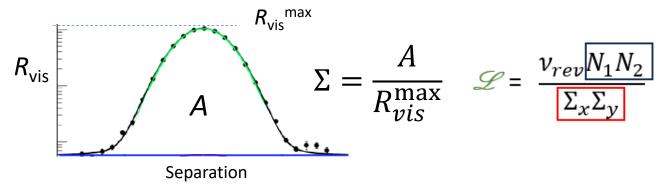
$$\mathcal{L} = v_{rev} N_1 N_2 \iint \rho_1(x, y) \rho_2(x, y) dx dy$$

Factorisation assumption:
$$\rho(x, y) = \rho(x)\rho(y)$$
 \Rightarrow $\mathcal{L} = \frac{v_{rev}N_1N_2}{\sum_{x}\sum_{y}}$

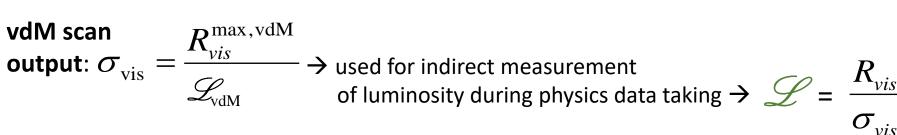
 Σ_{x} , Σ_{y} : effective widths of the beam overlap region

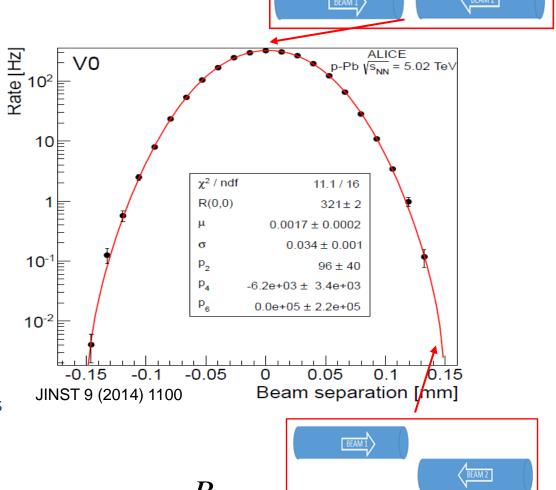
- can be calculated from machine parameters, with poor precision (> 10%)
- can be measured directly in dedicated sessions
 - beam-gas imaging (LHCb)
 - van der Meer (vdM) scan (all large LHC experiments)

$$N$$
 = efficiency-corrected yield
for a given physics process
 $\mathcal{L}_{int} = \int \mathcal{L}(t) dt$ = integrated luminosity

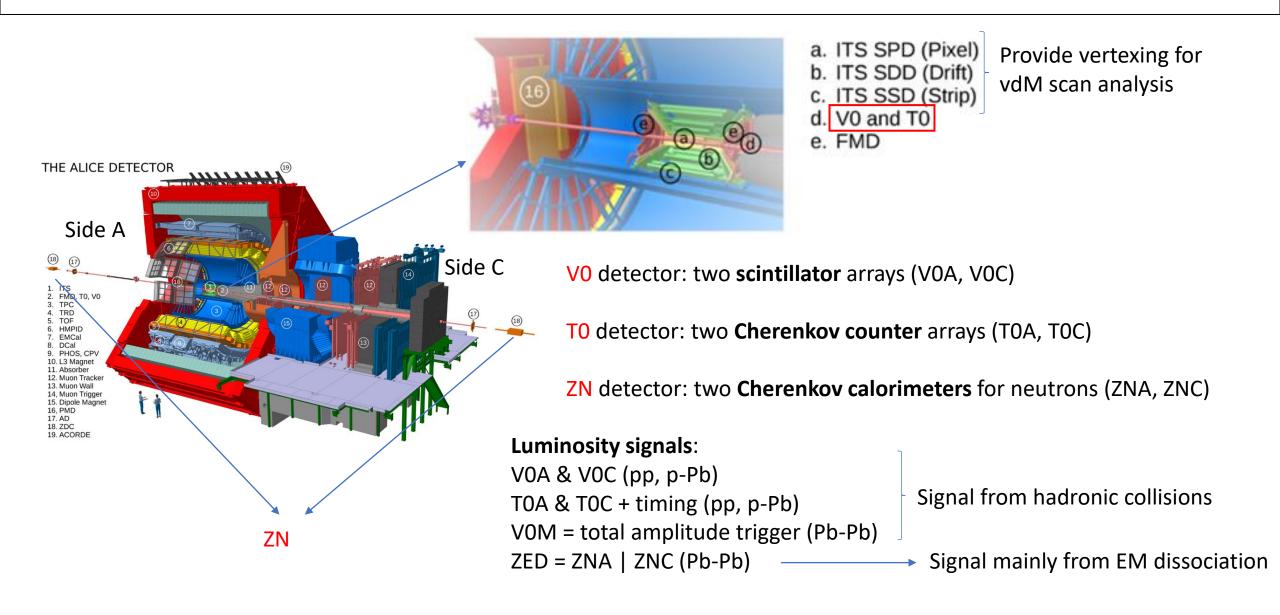

$$1/\Sigma_x = \int \rho_{1x}(x)\rho_{2x}(x)dx$$

$$1/\sum_{y} = \int \rho_{1y}(y)\rho_{2y}(y)dy$$


Bunch intensities N_1N_2 : measured by LHC instrumentation

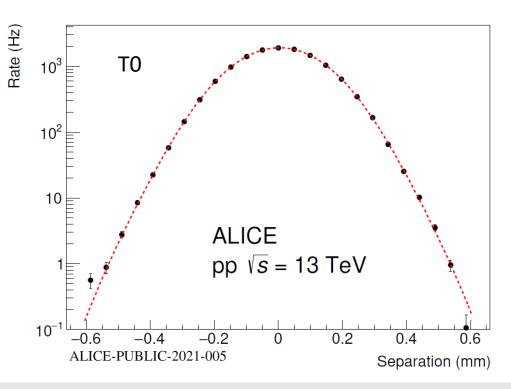

The vdM scan method

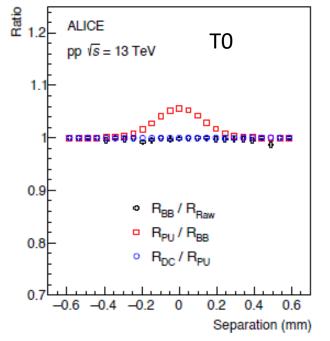
- Choose a suitable **«visible»** reference **process**
- Measure its rate R_{vis} vs beam separation in a dedicated scan

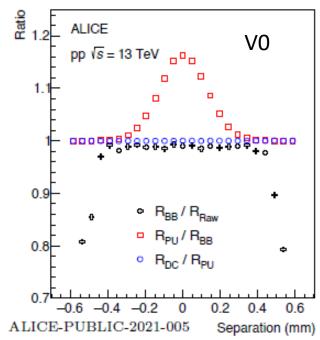


- R_{vis} is corrected for both detectorand beam-related effects:
 - noise + afterglow
 - separation-dependent acceptance
 - beam-gas and beam-satellite collisions
- Both R_{vis} and the separation need to be corrected for beam-beam effects (mutual EM interaction between beams) and beam drifts

ALICE luminometers (Run 2)




pp/p-Pb vdM scans: corrections & fit


pp and p-Pb scans:

 χ^2 -based fit to trigger rate vs separation, for each bunch pair, after correction for:

- beam-induced background (use timing)
- Poissonian pile-up
- beam intensity decay

Curves are fitted with a Gaussian x polynom. function to extract head-on rate and width

$$\Sigma_x = \frac{\int [R_{\text{vis}}(\Delta x, 0)] d\Delta x}{R_{\text{vis}}(0, 0)}$$

$$\Sigma_y = \frac{\int [R_{\text{vis}}(0, \Delta y)] d\Delta y}{R_{\text{vis}}(0, 0)}$$

 $\Sigma_{x,y}$ measured by T0 and V0 typically agree to the per-mil level

Fit strategy for Pb-Pb vdM scans

Pb-Pb scans:

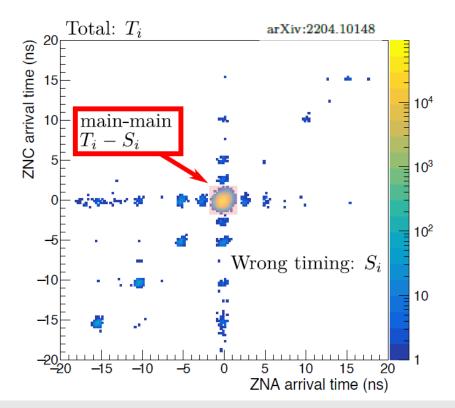
- χ^2 -based fit not reliable due to low number of counts in the tails
- For each bunch pair: binomial likelihood fit to the number of trigger counts (t_i) in n_i sampled orbits in time bin i
- μ_i = average number of triggers per bunch crossing in time bin i, includes all known effects
- luminosity dependence on intensity (N_1N_2) and beam separation $(\Delta x_i, \Delta y_i)$
- contamination from beam-gas collisions satellite collisions (next slide) noise
- σ_{vis} extracted as a fit parameter

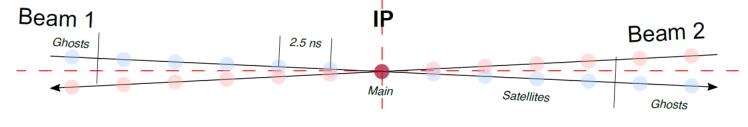
$$\ln \mathcal{L} = \sum_{i} \left[t_{i} \ln P_{i} + (n_{i} - t_{i}) \ln (1 - P_{i}) \right] \qquad P_{i} = 1 - e^{-\mu_{i}}$$

$$\mu_{i} = \frac{\mu_{\text{vis}}(\Delta x_{i}, \Delta y_{i})}{\nu_{\text{rev}}} + \left[p_{\text{sat},i} \right] + \left[p_{\text{beam}1} N_{1} + p_{\text{beam}2} N_{2} \right] + \left[p_{0} \right]$$

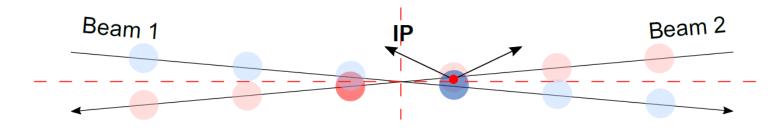
$$\mu_{\text{vis}}(\Delta x_{i}, \Delta y_{i}) = \nu_{\text{rev}} N_{1} N_{2} \frac{\sigma_{\text{vis}}}{\sum_{x} \sum_{y}} \left[f(\Delta x_{i}) g(\Delta y_{i}) \right]$$

Luminosity dependence on separation modeled by the $f(\Delta x_i)$ and $g(\Delta y_i)$ functions:


- Gaussian core
- variable number of (symmetric) free parameters to describe the tails

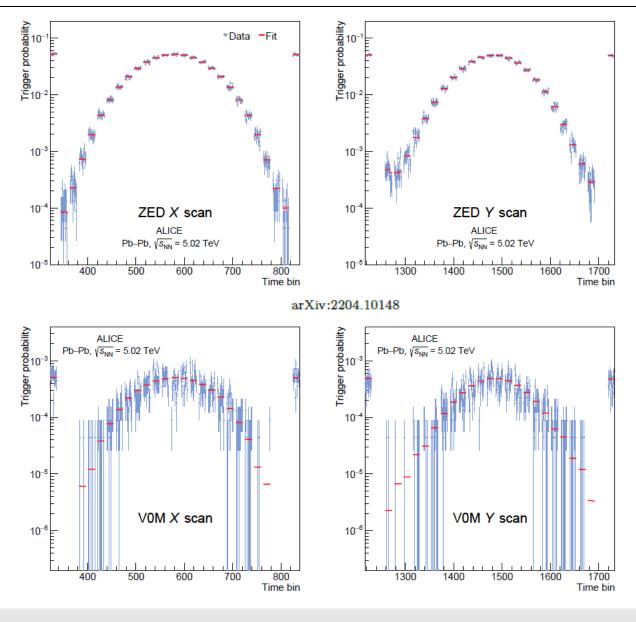

Treatment of satellite collisions for Pb-Pb scans

Satellites: charge circulating in non-nominal RF buckets, close in time and space to the main bunch -> ~6% of total charge in the 2018 vdM scan


They collide at (sat.-sat.) or near (main-sat.) the nominal interaction point

-> can trigger the luminosity signal

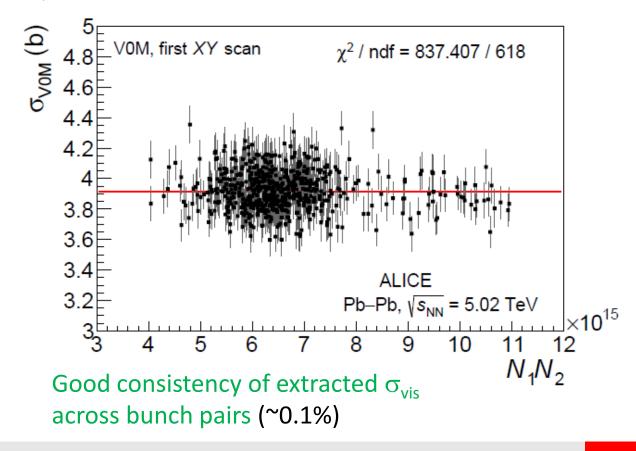
1.25 ns afterwards..

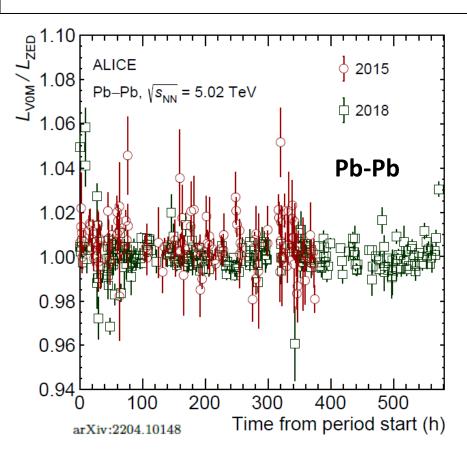

Satellite collisions nicely tagged by ZN timing capabilities

However, method statistically limited -> only bunch-pair-integrated S_i

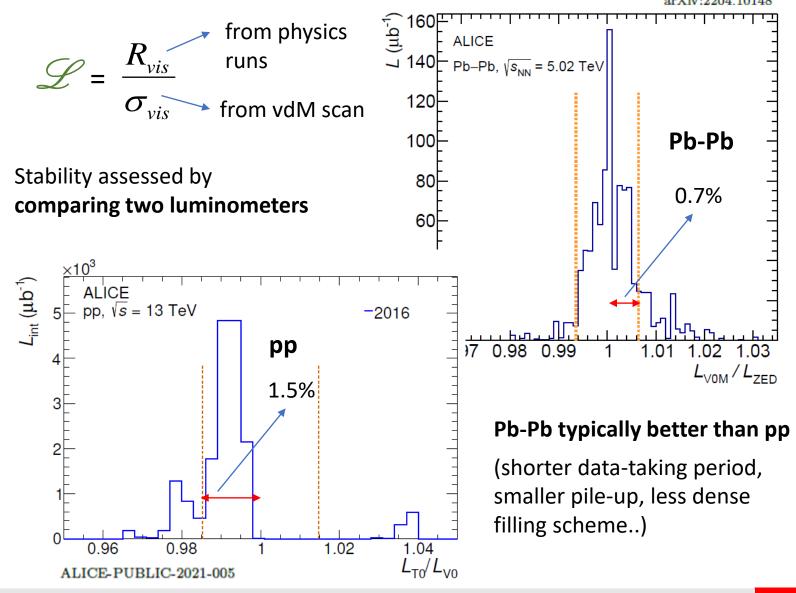
-> use measurement as input to a **combined likelihood**, whose other input is the likelihood of the current trigger probability given the current parameters

$$\ln \mathcal{L}_i = S_i \ln \left(\frac{p_{\text{sat},i}}{P_i} \right) + (T_i - S_i) \ln \left(\frac{P_i - p_{\text{sat},i}}{P_i} \right) + t_i \ln P_i + (n_i - t_i) \ln (1 - P_i)$$


Likelihood fits for the Pb-Pb vdM scans


Good description of the trigger probabilities despite low statistics

7-13 tail parameters needed to achieve $\chi^2/ndf \sim 1$


 $\Sigma_{x,v}$ measured by V0 and ZN agree to the per-mil level

Stability and consistency of the luminosity calibration

Uncertainty: the RMS difference from unity of the distribution of the luminosity ratio

Luminosity results: pp collisions

Uncertainty $\sqrt{s} =$	13 TeV	2016	2017	2018	Correlated?
V		T0 V0	T0 V0	T0 V0	
Statistical		0.05% 0.05%	0.07% 0.07%	0.05% 0.05%	No
Bunch intensity					
Beam current normalisation		0.5%	0.5%	0.4%	Yes
Relative bunch populations		0.1%	0.3%	0.1%	No
Ghost and satellite charge		< 0.1%	< 0.1%	< 0.1%	No
Non-factorisation		0.5%	0.2%	0.4%	Yes
Length-scale calibration		0.2%	0.3%	0.3%	No
Beam-beam effects		0.3%	0.3%	0.3%	Yes
Orbit drift		0.1%	0.1%	0.2%	No
Magnetic non-linearities		0.1%	0.2%	0.2%	Yes
Beam centring		< 0.1%	< 0.1%	0.1%	No
Luminosity decay		0.5%	0.5%	0.3%	No
Background subtraction		0.1% 0.6%	0.1% 0.8%	$0.1\% \mid 0.7\%$	Yes
Pile-up		$0.1\% \mid < 0.1\%$	0.5%	$0.2\% \mid < 0.1\%$	Yes
Fit model		0.2%	0.6%	0.4%	Yes
$h_x h_y$ consistency (T0 vs V0)		0.1%	0.4%	0.4%	No
Bunch-by-bunch consistency		< 0.1% < 0.1%	0.1% 0.1%	$0.1\% \mid 0.1\%$	No
Scan-to-scan consistency		$0.2\% \mid 0.1\%$	0.1% 0.1%	$0.5\% \mid 0.5\%$	No
Stability and consistency		1.5%	2.3%	1.6%	No
Total correlated		0.8% 1.0%	1.0% 1.2%	0.8% 1.0%	Yes
Total uncorrelated		1.6% 1.6%	2.4% 2.4%	$1.8\% \mid 1.8\%$	No
Total		1.8% 1.9%	2.6% 2.7%	1.9% 2.1%	Partially
ALICE BUDLIC 2021 00K					

Source $\sqrt{s} = 5 \text{ TeV}$ (2017)	III a contact at a contact	
	Uncertainty	
Non-factorisation	0.1%	
Orbit drift	0.1%	
Beam-beam deflection	0.5%	
Dynamic β^*	0.2%	
Background subtraction	0.2% (T0), 1.1% (V0)	
Pileup	0.5%	
Length-scale calibration	0.2%	
Fit model	0.5%	
$h_x h_y$ consistency (T0 vs V0)	< 0.1%	
Luminosity decay	0.9%	
Bunch-by-bunch consistency	< 0.1%	
Scan-to-scan consistency	0.5% (T0), 0.4% (V0)	
Beam centreing	0.2%	
Bunch intensity	0.4%	
Total on visible cross section	1.5% (T0), 1.8% (V0)	
Stability and consistency	1.1%	
Total on luminosity	1.8% (T0), 2.1% (V0)	
	ALICE-PUBLIC-2018-014	

ALICE-PUBLIC-2021-005

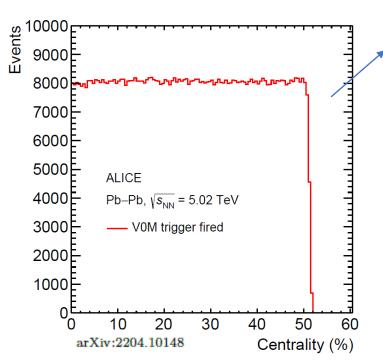
Uncertainties mostly uncorrelated across years -> unc. for combined 13 TeV sample ~1.6%

Luminosity results: p-Pb and Pb-Pb collisions

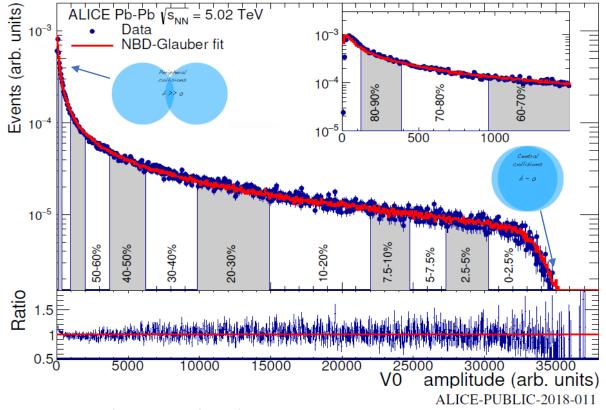
$p-Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$ (2016)						
Uncertainty	p–Pp	Pb-p	Correlated			
Transverse correlations	0.6%	0.9%	No			
Scan-to-scan consistency	0.6%	0.1%	No			
Length-scale calibration	0.5%	0.8%	No			
Background subtraction	0.5% (< 0.1%) V0 (T0)	0.6% (0.3%) V0 (T0)	Yes			
Intensity decay	0.6%	0.7%	No			
Method dependence	0.4% (0.5%) V0 (T0)	0.9% (0.6%) V0 (T0)	No			
Beam centring	0.1%	0.1%	No			
Bunch size vs trigger	0.2%	0.4%	No			
Absolute DCCT calibration	0.3%	0.3%	No			
Orbit drift	0.7%	0.3%	No			
Beam-beam deflection	< 0.1%	0.4%	Partially			
Ghost charge	< 0.1%	< 0.1%	No			
Satellite charge	< 0.1%	< 0.1%	No			
Dynamic β^*	< 0.1%	< 0.1%	Partially			
Total on visible cross section	1.5% (1.5%) V0 (T0)	1.9% (1.7%) V0 (T0)				
V0 vs T0 integrated luminosity	1.1%	0.6%	No			
Total on integrated luminosity	1.9% (1.8%) V0 (T0)	2.0% (1.8%) V0 (T0)				
Correlated part	0.5% (< 0.1%) V0 (T0)	0.7% (0.5%) V0 (T0)				
Uncorrelated part	1.8% (1.8%) V0 (T0)	1.9% (1.7%) V0 (T0)				
ALICE DUBLIC 2018 002						

$Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$ (comb. 2015+2018)				
Source	Uncertainty (%)			
	ZED V0M			
Statistical	0.008 0.08			
$h_{x0}h_{y0}$ consistency (V0M vs ZED)	0.13			
Length-scale calibration	1			
Non-factorisation	1.1			
Bunch-to-bunch consistency	0.1			
Scan-to-scan consistency	1			
Satellite collisions	1.2			
Beam-gas and noise	0.3			
Bunch intensity	0.8			
Emittance variation	0.5			
Magnetic non-linearities	0.2			
Orbit drift	0.15			
Beam-beam deflection and distortion	0.1			
Fitting scheme	0.4			
Total of visible cross section	2.4			
Stability and consistency	0.7			
Total of luminosity	2.5 2.5			

ALICE-PUBLIC-2018-002


arXiv:2204.10148

Measurement of the hadronic Pb-Pb cross section (I)


The VOM visible cross section is corrected for its efficiency $\mathcal{E}_{\mathsf{had}}$, determined via the centrality distribution of VOM events

Centrality is:

- expressed in percentiles of the total cross section
- determined via the total amplitude of V0 signal
 - → distribution fitted with geometrical (Glauber) + ancestor model to get rid of EM contamination in the most peripheral events

Centrality distribution of V0M-triggered events

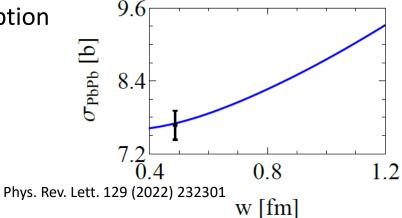
The integral of the distribution, properly normalised, gives the **V0M efficiency for hadronic collisions**:

$$\varepsilon_{\rm had} = 0.513 \pm 0.012$$

Uncertainty = 2.3% from variation of Glauber fit range and exploring different fit models

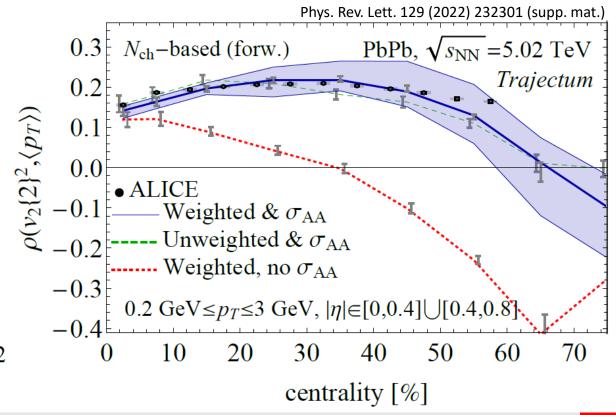
Measurement of the hadronic Pb-Pb cross section (II)

Hadronic Pb-Pb cross section at $\sqrt{s_{NN}}$ = 5.02 TeV:


$$\sigma_{\text{had}} = \frac{\sigma_{\text{V0M}}}{\varepsilon_{\text{had}}} = 7.67 \pm 0.25 \text{ b}$$

Important input for models, e.g. Trajectum

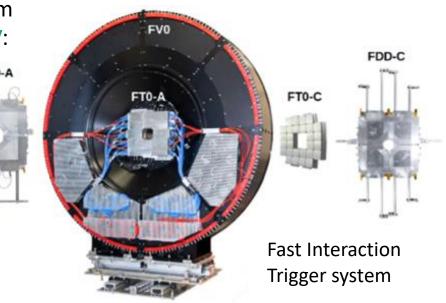
- couple **initial geometry of the collision** with the hydrodynamic evolution of the deconfined QCD medium
- fit parameters to particle distribution and correlation data


Measurement of σ_{had} provides a strong constraint on the nucleon width parameter

and improves description of correlation data

Prediction from the **Glauber model***: 7.62 ± 0.15 b \rightarrow **good agreement** with our result

* Ann. Rev. Nucl. Part. Sci. 71 (2021) 315–44



Conclusions

- Precise **luminosity determination is crucial** to the ALICE physics program
- Although based on a very simple principle, vdM scan -based luminosity calibration requires a detailed data-taking and analysis procedure to have good control of several subtle effects
- The precision of the ALICE luminosity measurements has improved from 3-5% in Run 1 to 2-3% in Run 2
- Uncertainty mainly driven by long-term stability for pp, and by a mix of effects for p-Pb and Pb-Pb
- Precise luminosity measurement in Pb-Pb collisions allowed ALICE to perform a significant measurement of the hadronic inelastic cross section at 5.02 TeV:

 σ_{had} = 7.67 ± 0.25 b

- → important input for models
- LHC Run 3: increased interaction rates
 (factor ~2 for pp, factor ~10 for Pb-Pb) pose new challenges
 for luminosity determination
 - → new luminometers (Fast Interaction Trigger project)
 - → upgraded ZN read-out

References for ALICE luminosity measurements

Run 1:

```
Eur. Phys. J. C 73 (2013) 2456 (pp 2.76 TeV 2011, pp 7 TeV 2010)

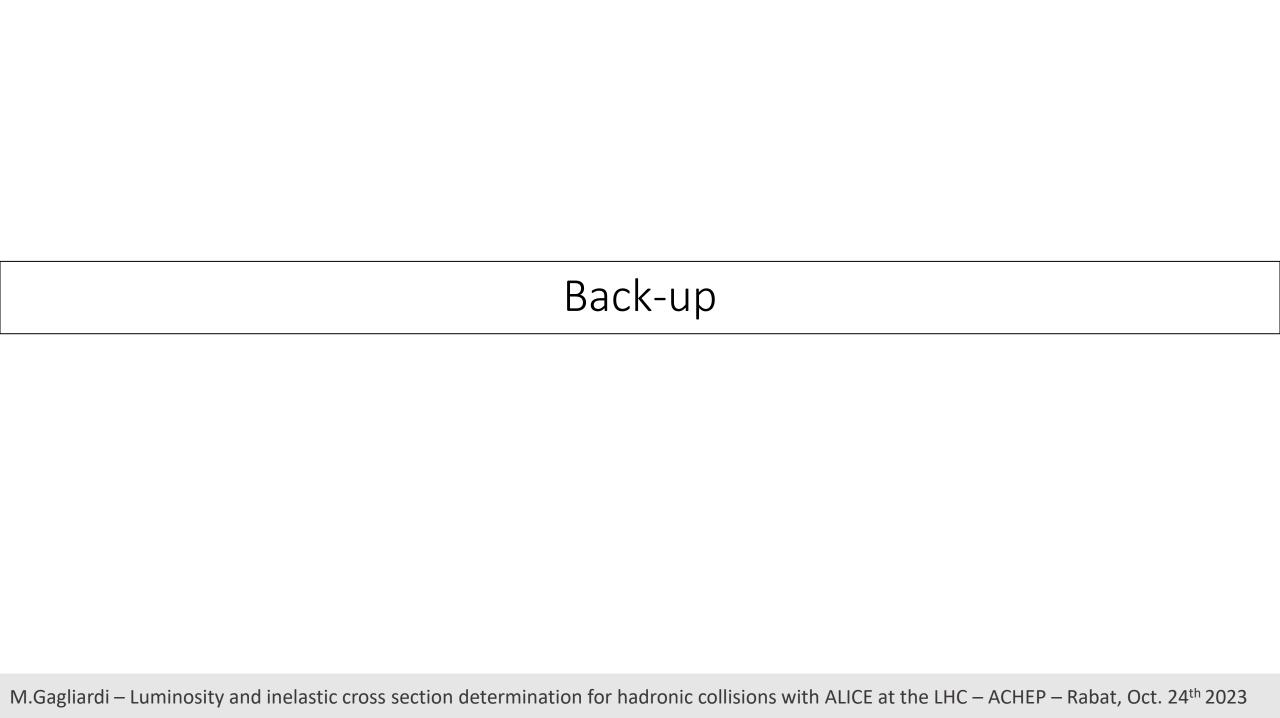
Int. J. Mod. Phys. A 29 (2014) 1430044 (pp 2.76 TeV 2011, pp 7 TeV 2010, Pb-Pb 2.76 TeV 2010-11)

JINST 9 (2014) P11003 (p-Pb 5.02 TeV 2013)

ALICE-PUBLIC-2017-002 (pp 8 TeV 2012)
```

Run 2:

```
<u>ALICE-PUBLIC-2016-002</u> (pp 13 TeV 2015)

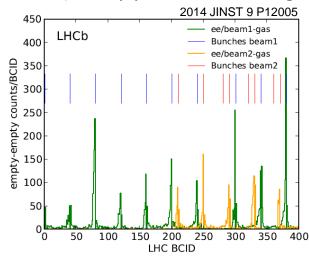

<u>ALICE-PUBLIC-2021-005</u> (pp 13 TeV 2016-17-18)

<u>ALICE-PUBLIC-2016-005</u> (pp 5 TeV 2015)

<u>ALICE-PUBLIC-2018-014</u> (pp 5 TeV 2017)

<u>ALICE-PUBLIC-2018-002</u> (p-Pb 8.16 TeV 2016)

<u>arXiv:2204.10148</u>, accepted by JINST (Pb-Pb 5.02 TeV 2015-18)
```

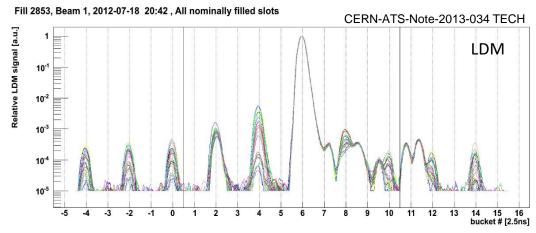


Bunch-intensity measurement

LHC current transformers:

- DCCT for the total beam intensity
- fastBCT for relative bunch populations
- Correction for **ghost and satellite charge:**

LHCb (as a by-product of beam-gas imaging)

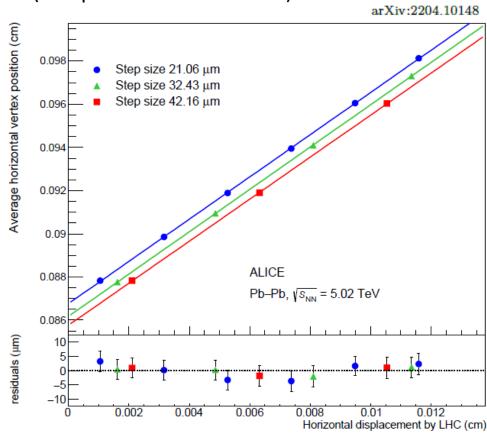

Ghost charge-induced counts vs LHC bunch slot

Bunch intensity was initially dominating the luminosity uncertainty **DCCT**

fBCT

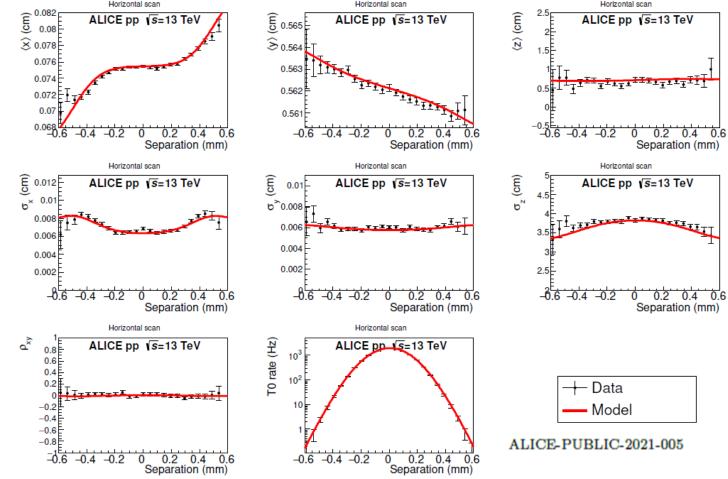
LHC Longitudinal Density Monitor (LDM)

Satellite charge-induced counts vs LHC RF bucket (1 bunch slot = 10 RF buckets)


great effort in calibrating and understanding these devices → per-mil level uncertainties

Length-scale calibration and non-factorisation corrections

Length-scale calibration:


How many μm is a LHC μm ?

→ measure vertex displacement vs nominal beam displacement in a dedicated scan (few per-mil to ~3% effect)

Non-factorisation: $\rho(x, y) \neq \rho(x)\rho(y)$

- potential bias (up to a few %) on vdM-based cross section, estimated by fitting the luminous-region parameters to a non-factorisable model

