

Search for Axions in the $H \rightarrow aa \rightarrow 4 \gamma$ decays at the LHC's ATLAS experiment

The ATLAS collaboration¹, Olivera Vujinovic^a, Peter Kramer^a, Hajar Imam^b, Kristof Schmieden^a,

Matthias Schott^a, Ben Nachman^c, and Sanha Cheong^d

a) Johannes Gutenberg Universitat Mainz(DE)

c) Lawrence Berkeley National Lab. (US)

b) HASSAN II University - Faculty of Sciences Ain Chock(MA)

d) SLAC National Accelerator Laboratory (US)

23-27 October 2023

Standard Model of Particle Physics

- Atoms → Electrons + Protons + Neutrons → Electrons + Quarks + Gluons
- Scientific theory that classifies elementary particles into distinct categories, including **quarks**, **leptons**, and **bosons**.
- Leads to numerous experimental confirmations, including the Higgs mechanism that explains the particle masses origine.
- Leaves a large part of the universe's composition and fundamental forces unexplored, such as the **dark matter**.

Axion Particle

The Axion Particle is a Promising Solution to the CP Problem :

• Why in experiment no CP violation was observed for the strong interractions while the theory predict it?

→ CP Problem

- Peccei-Quinn proposed as a theory that could resolve this problem:
 - → New symmetry called the Peccei-Quinn symmetry
- The Axions particles are scalar particle resulting from Peccei-Quinn symmetry breaking with light and weakly interacting properties.
- Axions can interact with photons due to Axion-photon coupling phenomenon which arises from the Axion's interaction with the electromagnetic field.

Large Hadron Collider (LHC)

The proton beams cross at four collision points which are the locations of the four major experiments of the LHC:

• The most generalist experiments are the sisters : ATLAS, CMS

- Launched in 2008, with 27-km ring that accelerates proton beams to close to the speed of light.
- Facilitates collisions of these high-energy particles, revealing the fundamental secrets of the universe.

A Toroidal LHC ApparatuS (ATLAS)

- Seeks a broad range of particle physics, from the Higgs boson to signs of new physics.
- 25 m high and 44 m long symmetric cylinder, with a weight of 7000 tons.
- Consists of different detecting subsystems that include:
 - The inner detector: to detect the charged particles traces and vertices.
 - **Calorimeters:** to measure particle energy.
 - **Muon spectrometer:** to determine the muon trajectories.
- & employs solenoidal and toroidal magnet assembly to measure the momentum of charged particles.

$H \rightarrow aa \rightarrow 4\gamma$: Motivation

- Explore unconstrained $m_a C_{a\gamma\gamma}$ parameter space for :
 - $H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$
 - 0.1 GeV $\leq m_a \leq 62$ GeV
 - 1e-5 $\leq C_{a\gamma\gamma} \leq 1$
- Derive upper limits on ALP cross-section & excluding $m_a C_{a\gamma\gamma}$ combinations
- Try to explain the anomalous magnetic moment of the muon by Axion-like particles that couple to photons and the Higgs

Challenges

• Low decay width that poses a significant challenge for the detection of Axions in photon $4\pi \alpha^2 m_a^3 + c_a + c_a^2$

decay channels: $\Gamma_{a\gamma\gamma} = \frac{4\pi \alpha^2 m_a^3}{\Lambda^2} |C_{a\gamma\gamma}|^2$

- Axion like particles (ALPs) has long life time:
 - Might decays close to the Calorimeter
 - & The detector design and the photon reconstruction is optimized for photons from primary vertex
 - ➔ Reduced reconstruction and identification efficiency

Event selection

- Preselection:
 - Diphoton triggers
 - \geq 1 reconstructed PV
 - \geq 2 photons with p_T > 15 GeV and $|\eta|$ < 2.37 (calo crack excluded)
 - Track based isolation: with a relative isolation parameter $p_T^{cone20}/p_T < 0.05$
- Photon ID based on 2 Artificial Neural Networks (ANNs):
 - ANN1: real vs. fake photons:
 - Signal: $H \rightarrow aa, H \rightarrow \gamma\gamma$ samples
 - Background: Data with photons with $p_T > 15$ GeV & loose isolation & $m_{inv} > 60$ GeV excluding the Higgs region
 - ANN2: merged vs. single photons:
 - Signal: $H \rightarrow aa \rightarrow 4\gamma$ merged photons
 - Background: $H \rightarrow aa \rightarrow 4\gamma$ single photons

Event categorization

- Each photon gets one of 3 labels:
 - merged (ANN1 > 0.98, ANN2 > 0.5, !tight)
 - loose
 - tight

- •Resulting in 5 categories :
 - •4S: 4 loose photons, at least 1 (3) tight photon
 - •3S: 2 tight + 1 loose (3 tight) photons
 - •2M: 2 merged photons
 - •1M1S: 1 merged + 1 loose photon
 - •28: 2 tight photons
- For $m_a > 5$ GeV: most significant categories are the 4S and 3S categories, other categories could be neglected.
- For $m_a < 3$ GeV: most significant categories are 2M and 1M1S.
- 2S category used as control region as in $120 < m_a < 130$ GeV, the H $\rightarrow \gamma\gamma$ process is more relevant

Background estimation

Long lived: 2S,1M1S,2M: Using a sideband in m_H distribution to fit the background contribution in [100, 150] GeV, excluding signal region based on data

- Fit functions used:
 - 2S and 1M1S: Landau distribution
 - 2M: Polynomial of the 3rd order

Long lived: 3S,4S: Using a sideband in m_H distribution to fit the background contribution in [85, 150] GeV for 3S, and [90, 150] GeV for 4S, excluding the signal region:

- Fit functions used:
 - polynomial of the 3rd order

•Using a 2D sideband fit approach

with the m_H^{reco} vs. m_a^{reco} spectra

Systematic uncertainties - displaced vertices

- Special attention paid to the systematic uncertainties due to displaced vertices and their effect on the shower shapes.
- Using cluster shapes associated to tracks from displaced vertices of long lived hadrons (kaons) comparing between data and Mc in 3 regions from the IP:
 - Near: vertices with longitudinal displacement $z_0 < 20$ mm and transverse displacement $d_0 < 1$ mm
 - Medium: 20 mm $< z_0 < 500$ mm, 1 mm $< d_0 < 80$ mm
 - Far: $z_0 > 500 \text{ mm}, d_0 > 80 \text{ mm}$
- The dependence of the mean and RMS of the shower shape distributions on the decay length fitted by a polynomial function to cover the remain decay lengths.
- The fits have applied to correct the shower shapes in our signal and used to ameliorate the identification & reconstruction in the analysis.

Results: exclusion limits

- Unfortunately no discovery, but most strict limits on
- $H \rightarrow aa \rightarrow 4y$ prompt decays
- First time coverage of the full mass range between 0.1 and 62 GeV.
- Search for a large range of $a \rightarrow \gamma \gamma$ coupling parameters and

first limits in the $C_{a\gamma\gamma}$ vs m_a plane using displaced photons.

→Most stringent limits to date.

Conclusion

- The study focused on detecting Axion-like particles (ALPs) in the Higgs boson decay channel using the ATLAS experiment.
- Two search approaches were employed: a prompt search for larger coupling values and a longlived search for smaller coupling values.
- Photon identification techniques, including Artificial Neural Networks, were used for selecting photons in low-mass axion scenarios.
- Systematic uncertainties, including those related to displaced vertices and their impact on shower shapes, were carefully considered.
- Upper limits on the branching ratio for $H \rightarrow aa \rightarrow 4\gamma$ were derived using the CLs technique, with results comparable to previous CMS studies in different mass ranges.

