

The W Boson Mass Anomaly within the inversed scenario of the Two-Higgs Doublet Model

ABOUABID Hamza

Université Abdelmalek Assaadi, Faculté des sciences et techniques Tangier, Université Abdelmalek Assaadi, Morocco

In Collaboration with : A. Arhrib, R. Benbrik, M. Krab, M. Ouchemhou

Based on : Nucl.Phys.B 989 (2023) 116143 (Advised by Prof. A.Arhrib) 17 Jun 2023

• A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹, ² by ATLAS and CMS that is so far compatible with SM Higgs boson ...

^{1.} Phys. Lett B 716 (2012) 1-29

^{2.} Phys. Lett B 716 (2012) 30

- A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹, ² by ATLAS and CMS that is so far compatible with SM Higgs boson ...
- λ_{hhh} , λ_{hhhh} and $H \to Z\gamma$ are still not reached at the LHC.

^{1.} Phys. Lett B 716 (2012) 1-29

^{2.} Phys. Lett B 716 (2012) 30

- A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹, ² by ATLAS and CMS that is so far compatible with SM Higgs boson ...
- λ_{hhh} , λ_{hhhh} and $H \to Z\gamma$ are still not reached at the LHC.
- The need of new physics is motivated by : Dark matter, baryon asymmetry, neutrino masses, among other.

^{1.} Phys. Lett B 716 (2012) 1-29

^{2.} Phys. Lett B 716 (2012) 30

Two Higgs Doublet Model Motivation

Motivation

- Larger scalar sector than SM
- Rich collider phenomenology gauge symmetry.

Two Higgs Doublet Model

General potential

The Higgs potential

$$V_{\text{THDM}} = m_1^2 \left| \Phi_1^2 \right| + m_2^2 \left| \Phi_2^2 \right| - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} \left| \Phi_1 \right|^4 + \frac{\lambda_2}{2} \left| \Phi_2 \right|^4 + \lambda_3 \left| \Phi_1 \right|^2 \left| \Phi_2 \right|^2 + \lambda_4 \left| \Phi_1^+ \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left\{ (\Phi_1^+ \Phi_2)^2 + (\Phi_2^+ \Phi_1)^2 \right\} + \left\{ \left[\lambda_6 (\Phi_1^+ \Phi_1) + \lambda_7 (\Phi_2^+ \Phi_2) \right] \Phi_1^+ \Phi_2 + \text{h.c.} \right\}$$
(1)

- Higgs 5 Bosons : H^+ , H^- , 2 CP-even h^0 , H^0 et 1 CP-odd A^0 .
- 9 free parameters : $m_A, m_h, m_H, m_{H^{\pm}}, \alpha, \tan(\beta), \lambda_6, \lambda_7 \text{ and } m_{12}^2$
- No additional symmetry required.
- FCNC at the three level.

Two Higgs Doublet Model Different types

2HDM Types

The yukawa Lagrangian can be given as :

$$\mathcal{L}_{YUKAWA}^{2HDM} = \bar{Q}_L^0 Y_u^0 \widetilde{\Phi}_2 u_R^0 + \bar{Q}_L^0 Y_d^0 \Phi_d d_R^0 + \bar{L}_L^0 Y_\ell^0 \widetilde{\Phi}_\ell \ell_R^0 + h.c$$

Type	u	d	1
Ι	Φ_2	Φ_2	Φ_2
II	Φ_2	Φ_1	Φ_1
Χ	Φ_2	Φ_1	Φ_2
Y	Φ_2	Φ_2	Φ_1

(2)

The scalar Potential

$$V_{\text{THDM}} = m_1^2 \left| \Phi_1^2 \right| + m_2^2 \left| \Phi_2^2 \right| - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} \left| \Phi_1 \right|^4 + \frac{\lambda_2}{2} \left| \Phi_2 \right|^4 + \lambda_3 \left| \Phi_1 \right|^2 \left| \Phi_2 \right|^2 + \lambda_4 \left| \Phi_1^+ \Phi_2 \right|^2 + \frac{\lambda_5}{2} \left\{ (\Phi_1^+ \Phi_2)^2 + (\Phi_2^+ \Phi_1)^2 \right\}$$
(3)

• The $\lambda_i, i = 1 \cdots 4$ parameters are all real.

- 5 Higgs bosons : 2 CP-even h^0 and H^0 , CP-odd A^0 , 2 charged H^+ and H^- .
- 7 free parameters : $m_A, m_h, m_H, m_{H^{\pm}}, \alpha, \tan(\beta)$ and m_{12}^2
- Additional symmetry Z_2 .

Investigating the M_W Anomaly in the 2HDM $\ensuremath{\mathsf{Motivation}}$

• New CDF-II measurement of the W bosons mass

 $M_W^{CDF} = 80.4435 \pm 0.0094$

• Deviation from M_W^{SM} with a 7σ of significance.

 $M_W^{SM} = 80.357 \pm 0.006$

• Possibility of New Physics.

Investigating the M_W Anomaly in the 2HDM $_{\rm Theoretical}$ prediction of M_W

1. Theoretical prediction for M_W :

$$M_{W}^{2}\left(1-\frac{M_{W}^{2}}{M_{Z}^{2}}\right) = \frac{\pi\alpha}{\sqrt{2}G_{\mu}}\left(1-\underbrace{\Delta r}_{\text{loop corrections}}\right),\tag{4}$$

with Δr is the shift in the fine structure constant arising from the charge renormalization which contains the contributions from light fermions.

Investigating the M_W Anomaly in the 2HDM $_{\rm Theoretical}$ prediction of M_W

1. Theoretical prediction for M_W :

$$M_{W}^{2}\left(1-\frac{M_{W}^{2}}{M_{Z}^{2}}\right) = \frac{\pi\alpha}{\sqrt{2}G_{\mu}}\left(1-\underbrace{\Delta r}_{\text{loop corrections}}\right),\tag{4}$$

with Δr is the shift in the fine structure constant arising from the charge renormalization which contains the contributions from light fermions.

2. Approximation for the 2HDM

$$\Delta M_W^2 = \frac{\alpha_0 c_W^2 M_Z^2}{c_W^2 - s_W^2} \left[-\frac{1}{2} S + c_W^2 T + \frac{c_W^2 - s_W^2}{4s_W^2} U \right],$$
(5)

where $\Delta M_W^2 = (M_W^{\rm 2HDM})^2 - (M_W^{\rm SM})^2.$

3. The 2HDM contribution to the effective weak mixing angle

$$\Delta \sin^2 \theta_{\rm eff} = \frac{\alpha_0}{c_{\rm W}^2 - s_{\rm W}^2} \left[\frac{1}{4} S - s_{\rm W}^2 c_{\rm W}^2 T \right].$$
(6)
8/14

Investigating the M_W Anomaly in the 2HDM $_{\mbox{\scriptsize Scan strategy}}$

- 2HDM type-I and type-X.
- Systematic scan using the public program 2HDMC-1.8.0 Eriksson :2009.
- Heavy Higgs is the SM-like Higgs boson $m_H = m_h^{SM} = 125.09$ GeV.
- The parameter scan are :

$$\begin{split} M_{h} &\in [15, 120] \text{ GeV}, \quad M_{A} &\in [15, 700] \text{ GeV}, \\ M_{H^{\pm}} &\in [80, 700] \text{ GeV}, \quad \sin(\beta - \alpha) \in [-0.5, 0.5], \\ \tan \beta &\in [2, 25], \quad m_{12}^{2} \in [0, M_{h}^{2} \sin \beta \cos \beta] \text{ GeV}^{2}. \end{split}$$
(7)

Investigating the M_W Anomaly in the 2HDM $_{\mbox{Constraints}}$

During the scan, the following theoretical and experimental constraints are fulfilled :

- Theoretical limit are imposed via 2HDMC.
- The experimental collider limits are examinated using HiggsBounds-5.9.0 and HiggsSignals-2.6.0 Bechtle :2020.
- Constraints from flavor physics are enforced using the result given in Ref. Haller :2018.

Related observables are calculated using the program SuperIso v4.1 Mahmoudi :2008.

• Compatibility with the Z width measurement from LEP. ALEPH :2005 We apply then the $\chi^2_{\rm M_W^{\rm CDF}}$ within 2σ of the new CDF measurement :

$$\chi^2_{M_W^{CDF}} = \frac{(M_W^{2HDM} - M_W^{CDF})^2}{(\Delta M_W^{CDF})^2}.$$
(8)

Investigating the M_W Anomaly in the 2HDM $_{\mbox{\scriptsize Results}}$

Figure - Left : The 2HDM prediction for the W boson mass as a function of T, with the color bar showing the size of S. The light orange band indicates the new CDF measurement and the associated 1σ uncertainty. The SM prediction for M_W showing in light yellow region within $\pm 1\sigma$

Investigating the M_W Anomaly in the 2HDM $_{\mbox{\scriptsize Results}}$

Figure – Points from the scan in the $(M_{H^{\pm}} - M_h, M_{H^{\pm}} - M_A)$ plane (left) and $(M_{H^{\pm}} - M_H, M_{H^{\pm}} - M_A)$ plane (right) planes in 2HDM type-I. The color code indicates the shift from the SM prediction for M_W .

- SM is the most sophisticate and precise theory but not an ultimate model of fundamental physics.
- 2HDM can explain the new CDF results on the M_W as well as SLD measurment on $\sin^2\theta_{\rm eff}.$

The W Boson Mass Anomaly within the inversed scenario of the Two-Higgs Doublet Model

Thank you!